
Create your own,

 animation, powered

.

LOFI

by Voxels

Ideal and fun for all hackers!

What you will create!

 Hello fellow hacker!
This is the start of a wonderful adventure. You
will create your very own LOFI animation!

This will be done with the help of:

+ Three.js

+ Voxels!

The Outline
But before we get started let’s see what we will
accomplish!

Brace yourself, the list might seem a bit length but you
will complete it in not time! You got this!

� Forking the template, replit fundemental�
� Quick explanation of the templat�
� THREE.JS Basic�
� Adding a camera, sample cubes and cube animation�
� Adding texture�
� Three.js must have�
� Recording functionality

OBJECTIVE #1
Forking the template, replit

fundementals

Forking
The first part of your journey is this!

We first must need to fork the template, because it has
many useful assets and all of the libraries pre-installed.

After opening the link provided, click the, FORK, button.

1

Forking
On the prompt enter your animation name and click, Fork Repl

2

Explaining Replit
After that your project that the animation will live in should be loaded into the same
tab. It should look like the image below�
�� Indicates the file manager, there you can see all of your files�
�� Files opened with an editor below them�
�� A preview window that will preview your animation, it should automatically

reload if it doesn't press RU�
�� Open the preview on another tab

3

OBJECTIVE #2

Quick explanation of the template

Template Explanation
Phew I hope forking the project wasn't that hard because we got more to do! :D
Let's start with a quick explaination of what the template provides us with:

+ The necessary libraries already downloaded

+ Bare necessary HTML code

+ Bare necessary JS code

+ Simple Assets

Feel free to skim this session if you have (or even don't have) time constraints!

HTML Code

1

JS Code

2

OBJECTIVE #3

THREE.JS Basics

Importing
This section will cover the basics of three.js so you can start with
the rendering.

Yes, its time! This is where we import THREE.JS for rendering. :D If
you had previous experience with Javascript you may already know
how to import things but for those who don't, here is an
explanatory Image.

1

Importing
For those who have figured it out by the image congrats to you!

Imports are just requests to another javascript file saying that we
want to load something from them.

Now let's add them! Your javascript lives on the script.js file. So all
we got to do is add 1 import statements, well actually 3 because
we also got to import the 3D model loader and the orbit controller.

2

Adding a renderer
Well it is time! We will add one of the most crucial piece of 3D rendering. The
RENDERER!

It will handle, well, the rendering :D

Three.js makes this process a lot less tedious that it would normally be so let's
jump into it.

In the first line we initialize the THREE WebGL renderer, it will handle the rendering
job. In the second line we set the rendering size and we pass the window width and
height. In the third line we append the renderer, so we can actually see.

Copy paste these lines:

3

The coordinate system

Well let's make a quick reference to the three.js coordinate system.

Like mostly all 3D applications, three.js utilizes the Cartesian coordinate system.
Here is a quick illustration of it below!

As shown above the height uses the Y variable, the depth uses the Z, and the width
uses the X variable. Well that is all you need to know about it!

Let’s render some cubes

4

OBJECTIVE #4
Adding a camera, sample cubes

and cube animation!

Scene, The world of our animation

We need to add a camera so we can render the scene!

To create the camera we will also need a scene first, so let's add that!

Copy this line above the render code, in order to intialize a new scene

1

Camera, Camera, CAMERA
Let’s add it :D

Copy this line above the render code, in order to intialize a new scene

2

� FOV: Camera frustum
vertical field of view�

� ASPECT: Camera frustum
aspect ratio�

� NEAR: Camera frustum near
plane�

� FAR: Camera frustum far
plane. For now use these
defaults

Cube
To add a cube we first need to create a material.

A material defines the appearance of the cube.

It can either be a color or a textures (called map), More about textures later.

In the first line we define the cube material, which the material that the cube will
use.

Then we create a cube with the THREE.Mesh with the parameters of it’s geometry
aka size (using THREE.BoxGeometry) and the material, which we pass the cube
material.

3

Rendering the cube
To render the cube we first need to add it to the scene.

Specifically you will need to add it into the run arrow
function, in order to render it only when the run button is
clicked.

3

PRO TIP

You may reuse the material for more than one cube, but
if you want a different color (or texture in the future)
split them into different variable.

i.e. All wood blocks would use a woodMaterial but
glass will use a glass material.

OBJECTIVE #5

Adding textures

Adding the texture loader
Yes you heard that right! Forget the boring colors, let's add real textures!

First upload your picture via dragging and dropping it in the assets/ folder.

I will name mine cube.jpg

First we need to create a loader to load the image. Copy this code above the
materials.

This just creates a loader, now we need to import the images.

1

Adding the texture loader
In the cube material replace the color: `0xWHATEVER`,

with `map: loader.load('assets/cube.png')`

That is it! Wasn't that easy?

2

OBJECTIVE #6

Three.js Must Haves

Skybox
Well a black void is boring, I hope we can all agree with that!

A skybox was already in the template in the assets/skybox.png :D

Isn't that handy, you may replace it of course!

Now between the loader and the materials copy the code shown below.

This will set the background to the assets/skybox.jpg !

1

Background Audio
Now let's add some audio.

The audio takes place at the end of the run arrow function, just before the animate
Copy this code the code shown below.

The order of the music must be last as to not interfere with the position / rendering.

2

Making the Camera Rotational
think we can agree that static cameras are boring so let's make ours to rotate!

So what are you waiting! After the render code, copy the lines below. (Picture 3)

Now the last thing we need to do is call it at the end of our animate function! Just
copy this line, before the render! (Picture 4)

3

4

OBJECTIVE #7

Recording

Capturer
Well the first thing we need to do is add the capturer so we can use it.

Copy the code after picture 1 after the imports.

Feel free to change the video format, if needed, but we prefer WEBM.

Now we need to add one more line just before the `renderer.render` function call on
the animate method. (Picture 2)

1

2

Start / Stop Recording
To start the recording it is very simple!

On the start rec arrow function add the code shown in picture 3.

Only problem is that we can’t save the result D:

But fear not!

On the stop recording arrow function add picture 4.

3

4

Final Tips and Farewell
It is finally time! I hope you learned enough to start on your own.

Make sure to keep these tips in mind!

1) Save all objects into variables 
2) Create new materials for new objects, reuse materials for similar ones 
3) Add objects to the scene on the run methid 
4) Change object position.rotation on run method *after* adding them to the scene. 
5) Use the tick variable to keep track of time in your animations 
6) Feel free to seek the demo code for more examples

For advanced adventures, seek the advanced section

in the text jam.

